300-Hz subthalamic oscillations in Parkinson's disease.

نویسندگان

  • G Foffani
  • A Priori
  • M Egidi
  • P Rampini
  • F Tamma
  • E Caputo
  • K A Moxon
  • S Cerutti
  • S Barbieri
چکیده

Despite several studies and models, much remains unclear about how the human basal ganglia operate. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for complicated Parkinson's disease, but how DBS acts also remains unknown. The clinical benefit of DBS at frequencies >100 Hz suggests the possible importance of neural rhythms operating at frequencies higher than the range normally considered for basal ganglia processing (<100 Hz). The electrodes implanted for DBS also offer the opportunity to record neural activity from the human basal ganglia. This study aimed to assess whether oscillations at frequencies >100 Hz operate in the human STN. While recording local field potentials from the STN of nine patients with Parkinson's disease through DBS electrodes, we found a dopamine- and movement-dependent 300-Hz rhythm. At rest, and in the absence of dopaminergic medication, in most cases (eight out of 11 nuclei) the 100-1000 Hz band showed no consistent rhythm. Levodopa administration elicited (or markedly increased) a 300-Hz rhythm at rest [(mean +/- SD) central frequency: 319 +/- 33 Hz; bandwidth: 72 +/- 21 Hz; power increase (after medication - before medication)/before medication: 1.30 +/- 1.25; n = 11, P = 0.00098]. The 300-Hz rhythm was also increased by apomorphine, but not by orphenadrine. The 300-Hz rhythm was modulated by voluntary movement. Before levodopa administration, movement-related power increase in the 300-Hz rhythm was variably present in different subjects, whereas after levodopa it became a robust phenomenon [before 0.014 +/- 0.014 arbitrary units (AU), after 0.178 +/- 0.339 AU; n = 8, P = 0.0078]. The dopamine-dependent 300-Hz rhythm probably reflects a bistable compound nuclear activity and supports high-resolution information processing in the basal ganglia circuit. An absent 300-Hz subthalamic rhythm could be a pathophysiological clue in Parkinson's disease. The 300-Hz rhythm also provides the rationale for an excitatory--and not only inhibitory--interpretation of DBS mechanism of action in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subthalamic span of beta oscillations predicts deep brain stimulation efficacy for patients with Parkinson's disease.

The significance of oscillations that characterize the subthalamic nucleus in Parkinson's disease is still under debate. Here, we analysed the spectral and spatial characteristics of 314 microelectrode trajectories from 128 patients undergoing subthalamic nucleus deep brain stimulation surgery for Parkinson's disease. We correlated the subthalamic nucleus pathophysiology with the outcome of sur...

متن کامل

Subthalamic nucleus phase–amplitude coupling correlates with motor impairment in Parkinson’s disease

OBJECTIVE High-amplitude beta band oscillations within the subthalamic nucleus are frequently associated with Parkinson's disease but it is unclear how they might lead to motor impairments. Here we investigate a likely pathological coupling between the phase of beta band oscillations and the amplitude of high-frequency oscillations around 300 Hz. METHODS We analysed an extensive data set comp...

متن کامل

Neuronal activity of the human subthalamic nucleus in the parkinsonian and nonparkinsonian state.

We recorded resting-state neuronal activity from the human subthalamic nucleus (STN) during functional stereotactic surgeries. By inserting up to five parallel microelectrodes for single- or multiunit recordings and applying statistical spike-sorting methods, we were able to isolate a total of 351 single units in 65 patients with Parkinson's disease (PD) and 33 single units in 9 patients suffer...

متن کامل

Computational Model of Recurrent Subthalamo-Pallidal Circuit for Generation of Parkinsonian Oscillations

Parkinson's disease is a movement disorder caused by dopamine depletion in the basal ganglia. Abnormally synchronized neuronal oscillations between 8 and 15 Hz in the basal ganglia are implicated in motor symptoms of Parkinson's disease. However, how these abnormal oscillations are generated and maintained in the dopamine-depleted state is unknown. Based on neural recordings in a primate model ...

متن کامل

Subthalamic nucleus functional organization revealed by parkinsonian neuronal oscillations and synchrony.

The emergence of oscillations and synchrony among neurons of the basal ganglia is a well-known characteristic of Parkinson's disease. In this study we used intra-operative microelectrode recording to investigate this interrelationship between these two phenomena in the subthalamic nucleus (STN) neurons of 39 human Parkinson's disease patients undergoing deep brain stimulation surgery. From the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 126 Pt 10  شماره 

صفحات  -

تاریخ انتشار 2003